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1 Introduction

DSGE models are usually estimated using only a subset of the variables that are present in them. This

is partly due to the fact that some variables, such as capital, are not observed. However, even variables

for which data exist are often not utilized. One could explain this with the restriction that the number

of included observables should not be greater than the number of shocks in the model. While there are

ways to get around this restriction,1 it is a fact that in the literature there are similar DSGE models

estimated with different sets of observables. It is not clear what motivates these different choices, nor

what consequences that has on the empirical findings.

In a recent article Canova, Ferroni, and Matthes (2014) (CFM henceforth) seek to provide some

guidance on how to select the most informative among several available sets of observables. They

propose the use of two criteria which rank different combinations of variables according to measures of

identification and information content. The first criterion starts by selecting the sets of variables that

satisfy a rank condition for identification of the free model parameters. To pick the best among the

selected sets, measures of closeness to a convoluted singular system of all observables are computed in

terms of sensitivity of the log-likelihood function to parameters of interest. The one yielding smallest

discrepancy is chosen as the most informative. The second criterion is based on Bierens (2007) and

uses convolutions of both the singular and non-singular systems with the same non-singular distribution.

The combination of variables whose convoluted distribution is closest to the convoluted singular system

of all available observables is selected as being the most informative.

CFM apply their selection criteria to a simplified version of the Smets and Wouters (2007) model.

The model has 4 shocks and a total of 7 observables, namely output (yt), consumption (ct), investment

(it), wages (wt), hours (ht), inflation (πt), and nominal interest rate (rt). Thus, 35 combinations of

variables are available to use in estimation. Among these, as most informative overall the authors select

yt, ct, it and either wt or ht. Furthermore, it is argued that the ranking of different sets of variables

does not depend on the value of the parameters at which the model is evaluated, and is robust to

increasing the number of shocks as in the original Smets and Wouters (2007) model.

The purpose of this comment is to evaluate these claims, applying a different analytical approach

to the same model. As in Iskrev (2010), where the choice of observables is studied with respect

to the original Smets and Wouters (2007) model, here we use criteria based on the expected Fisher

information matrix (FIM). Using the FIM has several advantages. First, as the name suggests, it is

a measure of the amount of information about the parameters available in a sample (see Rothenberg

(1971)). It takes the model as it is and does not require convoluting the true data density as the

measures CFM use do.2 Second, FIM depends on the set of observables and the sample size, but

does not depend on actual data. Thus, the information one could expect to have in different sets of

observables and in samples of different sizes can be measured and compared prior to estimation. Third,

using the FIM one can compute measures of expected estimation uncertainty with respect to each model

parameter. In general, there is a trade-off between the amount of information contained in different sets

1One is to introduce measurement errors in the observed series. Another is the approach in Bierens (2007).
2This approach follows Bierens (2007) where the theoretical model is assumed to be misspecified and the singular

distribution it implies is convoluted and compared to a convoluted distribution of an a-theoretical econometric model
which is assumed to represent the true data generating process.
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of observables with respect to different parameters. Quantifying the amount of information for each

parameter provides a clearer understanding of the trade-offs involved in selecting one set of observables

over another. The measures CFM use do not provide such information. And fourth, the FIM can

be evaluated analytically for linearized Gaussian model such as the one in Smets and Wouters (2007).

This is very useful in practice since it allows many possible combinations of variables to be compared

quickly for a large number of a priori plausible parameter values. Furthermore, the use of analytical

derivatives minimizes the risk of reaching wrong conclusions as a result of numerical errors.

2 Analysis

In this section we apply the FIM approach to the model analyzed in CFM. We address three main

questions: (1) is the rank condition useful for selecting the set of observables, (2) which is the most

informative set of four variables out of the seven variables that are available, and (3) are the results

sensitive to changes in the parameter values and the number of shocks.

2.1 Is the rank condition useful?

We start by checking whether the parameters of the simplified SW model are identified if only four of

the seven variables are observed. It is well known that four parameters - ξw, ξp, ǫw and ǫp, are not

separately identifiable in the sense that in the linearized model ξw cannot be distinguished from ǫw,

and ξp cannot be distinguished from ǫp. As in the original paper, we will assume that ǫw and ǫp are

both known. This leaves 27 free parameters.

A necessary and sufficient condition for local identification is that the FIM has full rank. When

evaluated at the parameter values from Table 2 in CFM, the FIM has full rank of 27 for all 35 combi-

nations of four variables. Thus, the rank condition alone provides no useful information regarding the

best set of variables to use in estimating the model.

2.2 Which are the best four observables?

Selecting the best combination of variables requires a criterion on the basis of which to compare and

rank the alternatives. Which criterion should be used depends on the purpose for which the model is

estimated. In any case, the criterion would be a function of the estimated parameters and would rank

as better sets of observables that are more informative about the relevant function of the parameters

of interest θ.

When the objective is to minimize the estimation uncertainty about θ as a whole, a popular criterion

to use is the natural logarithm of the determinant of the inverse of the FIM, i.e. ln(det(I−1(θ))). This

is known in the optimal design literature as D-optimality criterion. The well-known Cramér-Rao (CR)

theorem tells us that, depending on whether the asymptotic FIM is used or the finite sample one, its

inverse gives either a lower bound on the asymptotic covariance matrix of any consistent estimator of

θ, or a lower bound on the covariance matrix of any unbiased estimator θ. Furthermore, the diagonal

elements of I−1(θ) are lower bounds on the variances of estimators of individual parameters. This can

be used to construct a criterion which assigns different weights to the parameters, so as to reflect their
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Table 1: Most informative and least informative sets of observables

geometric average D-optimality

rank 24 parameters 17 parameters 6 parameters 24 parameters

1 y, c, w, r y, c, w, π c, i, π, r c, i, π, r
2 c, i, π, r y, c, w, r y, c, w, π c, w, π, r
3 y, c, w, h c, i, π, r y, c, π, h y, w, π, h

33 c, i, w, π y, i, π, r y, i, w, h y, i, π, r
34 y, c, i, h y, c, i, π y, i, r, h y, i, r, h
35 y, c, i, π y, c, i, h y, c, i, h y, c, i, h

Note: The table shows the best 3 and the worst 3 sets of observables according to the geometric
average and D-optimality criteria. The geometric average criterion is computed for 3 groups of
parameters: 24 (all free) parameters; 17 (all except shock) parameters; 6 (only λ,ιp,ξp,σl,rπ,ry)
parameters.

relative importance to the researcher. An example of such a criterion is the weighted geometric average

of the diagonal elements of I−1(θ),

geometric average criterion =

(

k
∏

i=1

CRLB
wi

θi

)1/
∑

k

i=1
wi

(2.1)

where CRLBθi is the i-th diagonal element of I−1(θ), k is the number of free parameters, and wi is the

weight assigned to θi. The geometric average is more appropriate to use than the arithmetic average

since parameters typically have different range.

In what follows we use the finite sample FIM in order to take a proper account of the size of the

sample, which is set to T=150, as in CFM.3 We report three versions of the weighted geometric average

criterion with: (1) equal weights on all free parameters; (2) equal weights on the free structural param-

eters and zero weights on the shock parameters; (3) equal weights on the six parameters emphasized

in CFM, namely λ, ιp, ξp, σl, rπ, and ry , and zero weights on all other parameters. To be comparable

with CFM, we assume that δ, λw and cg are known. This leaves 24 free parameters, 17 of which are

structural and the other 7 are shock parameters.

Table 1 lists the best three and worst three sets of variables according to each criterion. The set

containing (c, i, π, r) is selected as most informative by two of the criteria, while the other two rank

it among the top three sets. All criteria select sets containing (y, c, i) as least informative, with three

of the criteria picking h, and the fourth one selecting π as the worst fourth variable. However, as can

be seen in the first quadrant of Figure 1, the difference between (y, c, i, h) and (y, c, i, π), is very small,

when the criterion is the geometric average of all 24 parameter. The figure shows the values associated

with the 35 sets of variables, sorted from best to worst according to each criterion. It can be seen that

(c, i, π, r) is in fact very close to the optimal sets selected by the first two criteria, which rank it second

3The asymptotic FIM is defined as the limit of the average finite sample FIM, which in turn is the negative expected
Hessian of the log-likelihood function. With the asymptotic FIM information accumulates at a constant rate T and
therefore the ranking of observables does not depend on the sample size. With the final sample FIM information may
accumulate at different and changing rates for different sets of observables. Thus, the ranking may change with the
sample size.
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and third, respectively. It also shows that there are numerically meaningful differences between the

most and least informative sets of variables.
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Figure 1: Sorted values of different ranking criteria.

Table 2 reports the values of the individual CRLBs for the most and the least informative sets of

variables, as per the results in table 1. In addition, the set (y, c, i, w) is also included as it was selected

by CFM as one of the two most informative combinations. According to the criteria we use, this is the

most informative combination of variables that includes simultaneously y, c, and i. It is ranked 9-th

when the criterion is the geometric average of the CRLBs of the 17 structural parameters. As can be

seen from the table, choosing one combination of variables over another usually involves a trade-off in

terms of information about different parameters. Even the least informative set (y, c, i, h) is the most

informative one, amongst those in the table, for three of the free parameters, ρga, ϕ, and σa. The

overall best set (c, i, π, r), yields the lowest (among the six in the table) CRLBs for a half of the free

parameters, including three of the six deep parameters CFM focus on. If these are the parameters

we are most interested in, the only reason to select (y, c, i, w) over (c, i, π, r) would be if one assigns

much larger weights on σl and ξp than on the other four parameters. In particular, there is much less

information about the Taylor rule parameters, due to the absence of both r and π in that set. As can

be seen from the last row in panel B, with equal weights (c, i, π, r) is more than twice as informative

any of the sets that include y, c, and i.

One of the criteria used by CFM ranks the sets of variables on the basis of the sensitivity of the

likelihood to a group of parameters of interest. The measures they use compare the scores of the non-

singular and convoluted singular systems, and require simulated data to compute. A simpler and more

direct measure of sensitivity to a single parameter θi is the expected curvature of log-likelihood function,

given by −E
(

∂2ℓT (θ)
∂θ2

i

)

. Note that this is just the i-th diagonal element of the FIM and does not require

data to compute. When there is only one free parameter the sensitivity (also called Fisher information)

is equal to the inverse of the CRLB. Hence, in the single parameter case, the most sensitive and most

informative combinations of variables coincide. When there are multiple free parameters, however, this
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Table 2: Individual and overall parameter uncertainty

(c, i, π, r) (y, c, w, r) (y, c, w, π) (y, c, i, w) (y, c, i, π) (y, c, i, h)

param. A. CRLBs of individual parameters

ρga 1.754 0.206 0.215 0.245 0.307 0.158
α 0.048 0.049 0.046 0.054 0.075 0.071
ψ 0.102 0.201 0.255 0.131 0.187 0.179
β 0.011 0.016 0.018 0.011 0.015 0.014
ϕ 2.812 3.852 4.874 6.153 6.770 2.566
σc 0.154 0.192 0.279 0.224 0.536 0.430
λ 0.031 0.027 0.035 0.044 0.099 0.151
Φ 0.323 0.123 0.124 0.159 1.482 0.221
ιw 0.180 0.269 0.072 0.243 1.061 1.359
ξw 0.142 0.021 0.018 0.021 0.177 0.257
ιp 0.044 0.247 0.074 0.208 0.099 1.187
ξp 0.155 0.044 0.043 0.048 0.401 0.480
σl 0.790 0.163 0.196 0.223 2.000 0.934
rπ 0.300 1.588 1.336 4.476 1.753 3.973
r△y 0.048 0.042 0.138 0.166 0.193 0.569
ry 0.060 0.296 0.236 0.632 0.257 1.057
ρ 0.028 0.050 0.053 0.082 0.091 0.189
ρa 0.015 0.018 0.022 0.025 0.029 0.023
ρg 0.004 0.011 0.014 0.014 0.015 0.016
ρI 0.049 0.064 0.074 0.095 0.100 0.066
σa 0.418 0.100 0.098 0.208 0.361 0.046
σg 0.145 0.044 0.048 0.043 0.089 0.054
σI 0.063 0.197 0.271 0.082 0.086 0.082
σr 0.016 0.017 0.132 0.126 0.255 0.292

B. Overall (geometric average of CRLBs)

24 parameters 0.094 0.092 0.103 0.126 0.218 0.217
17 parameters 0.133 0.129 0.126 0.170 0.321 0.384
6 parameters 0.120 0.169 0.138 0.256 0.391 0.834

C. Overall (D-optimality criterion)

24 parameters -183 -158 -148 -139 -114 -108

Note: Panel A shows the values of the Cramér-Rao lower bounds (CRLBs) for sample size T = 150. Panel B
shows the geometric averages of the bounds for three groups of parameters: 24 (all free) parameters; 17 (all
except shock) parameters; 6 (only λ,ιp,ξp,σl,rπ,ry). Panel C shows the values of ln(det(I−1)). Lower values
always indicate more information.
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Table 3: Most sensitive and most informative sets of variables

most sensitive most informative

param. variables CRLBs variables CRLBs

ρga (y, c, i, h) 0.158 (y, c, i, h) 0.158
α (c, i, π, r) 0.048 (c, i, r, h) 0.039
ψ (c, w, π, r) 0.284 (c, i, π, r) 0.102
β (c, i, π, r) 0.011 (c, i, r, h) 0.009
ϕ (c, w, π, h) 2.679 (i, w, r, h) 1.793
σc (c, i, π, r) 0.154 (c, w, r, h) 0.131
λ (c, w, π, r) 0.028 (y, c, i, r) 0.022
Φ (y, w, π, h) 0.039 (y, w, π, h) 0.039
ιw (y, w, π, h) 0.106 (c, w, π, r) 0.065
ξw (y, w, π, h) 0.052 (y, c, w, h) 0.014
ιp (y, w, π, h) 0.042 (y, π, r, h) 0.036
ξp (y, w, π, h) 0.016 (y, w, π, h) 0.016
σl (y, w, π, h) 1.305 (y, c, w, r) 0.163
rπ (c, w, π, r) 1.282 (c, i, π, r) 0.300
r△y (c, i, π, r) 0.048 (y, c, w, r) 0.042
ry (c, w, π, r) 0.217 (c, i, π, r) 0.060
ρ (c, w, π, r) 0.032 (c, π, r, h) 0.026
ρa (c, w, π, r) 0.019 (c, i, w, r) 0.009
ρg (c, w, π, r) 0.012 (c, i, π, r) 0.004
ρI (c, w, π, r) 0.091 (c, w, π, h) 0.041
σa (y, w, π, h) 0.030 (y, w, π, h) 0.030
σg (y, i, w, r) 0.054 (y, c, i, w) 0.043
σI (c, i, π, r) 0.063 (c, i, π, r) 0.063
σr (c, i, π, r) 0.016 (c, i, π, r) 0.016

Note: The most sensitive set of variables w.r.t. θi is the one maximizing the i-th diagonal
element of I. The most informative set is the one minimizing the i-th diagonal element
of I−1.

is not necessarily true. As can be seen in Table 3, the most sensitive and most informative sets coincide

only for 6 of the 24 parameters. The table also shows the CRLBs corresponding the each set of variables.

In several cases the differences are very large, meaning that the most sensitive selection contains much

less information than the most informative one. A case in point is σl for which the CRLB with the

most sensitive combination (y, w, π, h) is 8 times larger than with the most informative combination

(y, c, w, r).

As explained in greater details in Iskrev (2010), the values of the CRLBs are determined by the

interactions of two factors – the sensitivity of the log-likelihood function to changes in individual

parameters, and the degree of collinearity among the effects of such changes. A large value of the

CRLB indicates that a parameter has only a weak effect on the log-likelihood function, and/or that its

effect on the log-likelihood can to a large extent be offset by the effects of other parameters. In the case

of σl, it is much harder to distinguish its effect on the log-likelihood from the effects of parameters like

ιw, ξw and ιp, when the observables are (y, w, π, h), compared to when the observables are (y, c, w, r).
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Table 4: Most informative and least informative sets of observables, different parameterizations

geometric average D-optimality

rank 24 parameters 17 parameters 6 parameters 24 parameters

A. CFM model, prior mean

1 c, w, r, h c, w, r, h c, w, r, h c, i, r, h
2 c, i, r, h c, i, r, h c, i, r, h c, w, r, h
3 y, c, w, π y, c, w, π c, π, r, h y, c, i, w
33 y, c, i, h y, i, π, r c, i, w, h y, c, i, r
34 y, c, i, r y, c, i, h y, i, w, h y, i, r, h
35 y, i, π, r y, c, i, r y, c, i, h y, c, i, h

B. SW model, prior mean

1 y, i, h, r y, i, h, r c, w, h, π y, i, h, r

2 y, c, h, r y, c, h, r c, h, π, r y, c, h, r

3 y, i, h, π i, h, π, r y, c, h, π y, c, i, r

33 y, c, i, w y, c, i, h y, i, w, h c, w, h, π

34 c, i, w, h y, c, i, w y, c, i, w c, i, w, π

35 c, i, w, π c, i, w, π y, c, i, h c, w, π, r

C. SW model, posterior mean

1 y, i, h, r y, i, π, r c, h, π, r y, i, h, r

2 y, i, π, r i, w, h, r c, i, π, r y, h, π, r

3 y, c, h, r y, i, h, r w, h, π, r y, c, h, r

33 y, w, h, π c, i, w, π y, c, i, r y, c, i, w

34 y, c, i, h y, c, i, π y, c, i, w y, w, h, π

35 c, i, w, π y, c, i, h y, c, i, h y, c, i, h

Note: see note to Table 1.

2.3 Are the results robust to changes in the parameter values and the

number of shocks?

The results presented in the last section are conditional on the particular parameter values and the

assumptions CFM make regarding the number of shocks and the stationarity of the observables. Here

we check whether the optimal selection of observables is robust to changes in the parameter values and

the model specification.

We consider three alternatives. First, we change the parameter values keeping the rest of the

model as before. Instead of the baseline parametrization, which is similar to the posterior mean in

Smets and Wouters (2007), we use the prior mean from that paper. The prior mean is a natural choice

since the analysis is supposed to happen prior to estimation. In the other two cases the model is as

specified in Smets and Wouters (2007), i.e. with seven shocks and deterministic trend, and the growing

variables being observed in terms of growth rates. We refer to this as the SW specification. That model

is also evaluated at the means of the prior and the posterior distributions. In order for the results to

be comparable with those in the previous section, we maintain the same group of free parameters.

Therefore, we assume that the parameters of the three additional shocks as well as the trend parameter
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Table 5: Optimal sets of observables, different parameterizations

A. CFM model B. SW model

prior mean posterior mean prior mean posterior mean

param. variables CRLBs variables CRLBs variables CRLBs variables CRLBs

ρga (y, i, w, h) 0.110 (y, c, i, h) 0.158 (y, c, i, h) 0.119 (y, c, i, h) 0.136
α (y, c, i, w) 0.005 (c, i, r, h) 0.039 (c, h, π, r) 0.025 (c, h, π, r) 0.167
ψ (y, c, i, w) 0.051 (c, i, π, r) 0.102 (c, i, h, r) 0.030 (y, c, i, r) 0.031
β (y, c, i, h) 0.003 (c, i, r, h) 0.009 (y, i, w, h) 0.148 (y, c, i, w) 0.251
ϕ (c, i, π, h) 0.076 (i, w, r, h) 1.793 (c, i, h, r) 0.667 (c, i, h, r) 2.544
σc (c, i, r, h) 0.039 (c, w, r, h) 0.131 (c, i, h, r) 0.202 (c, i, h, r) 0.253
λ (c, i, r, h) 0.004 (y, c, i, r) 0.022 (c, i, h, r) 0.047 (c, i, h, r) 0.079
Φ (y, w, π, h) 0.060 (y, w, π, h) 0.039 (c, i, w, h) 0.083 (y, i, h, r) 0.195
ιw (c, i, w, π) 0.083 (c, w, π, r) 0.065 (c, w, h, π) 0.122 (c, w, h, π) 0.173
ξw (y, w, π, r) 0.015 (y, c, w, h) 0.014 (c, w, h, π) 0.066 (c, w, h, r) 0.055
ιp (c, w, π, h) 0.044 (y, π, r, h) 0.036 (y, w, h, π) 0.073 (w, h, π, r) 0.093
ξp (y, w, π, h) 0.033 (y, w, π, h) 0.016 (y, w, h, π) 0.091 (y, w, h, π) 0.067
σl (c, w, r, h) 0.039 (y, c, w, r) 0.163 (c, w, h, π) 1.164 (c, w, h, r) 1.555
rπ (c, i, r, h) 0.167 (c, i, π, r) 0.300 (y, h, π, r) 0.552 (c, i, π, r) 0.510
r△y (c, w, r, h) 0.024 (y, c, w, r) 0.042 (y, i, π, r) 0.043 (c, i, h, r) 0.072
ry (c, i, r, h) 0.073 (c, i, π, r) 0.060 (c, h, π, r) 0.072 (c, i, π, r) 0.057
ρ (c, π, r, h) 0.021 (c, π, r, h) 0.026 (y, h, π, r) 0.068 (c, h, π, r) 0.047
ρa (c, i, r, h) 0.038 (c, i, w, r) 0.009 (y, i, w, h) 0.073 (y, i, h, r) 0.025
ρg (y, c, i, w) 0.052 (c, i, π, r) 0.004 (y, c, i, h) 0.076 (y, c, h, r) 0.017
ρI (c, i, r, h) 0.044 (c, w, π, h) 0.041 (c, i, h, r) 0.082 (c, i, h, r) 0.075
σa (y, i, w, h) 0.007 (y, w, π, h) 0.030 (y, i, w, h) 0.009 (y, i, w, h) 0.042
σg (y, w, π, r) 0.008 (y, c, i, w) 0.043 (y, c, i, h) 0.008 (y, c, i, h) 0.050
σI (c, i, r, h) 0.008 (c, i, π, r) 0.063 (c, i, h, r) 0.010 (c, i, w, r) 0.057
σr (c, π, r, h) 0.006 (c, i, π, r) 0.016 (c, h, π, r) 0.008 (c, h, π, r) 0.021

Note: see note to Table 3

are known.

Table 4 shows a summary of the results using the same criteria as before. Clearly, while there is

considerable consistency in the ranking across different criteria, the optimal combination of variables

is not invariant to the parametrization. Also, the two sets, (y, c, i, h) and (y, c, i, w), recommended by

CFM, are consistently ranked among the least informative, especially when the focus is on the six deep

parameters.

The optimal combinations of variables for each parameter are shown in Table 5. Panel A reports

the results for the CFM specification of the model evaluated at the prior and posterior mean values.

In panel B are shown the results for the SW specification. In the case of the CFM model, the optimal

combinations of variables are the same for only 3 parameters. For the SW specification there are

11 parameters for which the optimal sets coincide. There is only one parameter for which the most

informative combination is the same across both parameterizations and model specifications. In very

few cases the optimal combination of variables includes simultaneously y, c, and i.
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Table 6: Information gains, posterior mean of the SW model

param. y c i w h π r

ρga 92 32 40 2 72 1 9
β 4 29 15 2 11 46 88
α 39 39 81 3 12 10 63
ψ 41 21 43 18 25 5 22
ϕ 4 30 54 6 22 5 28
σc 8 48 30 5 16 22 44
λ 13 39 29 8 25 10 45
Φ 26 16 33 9 77 6 15
ιw 2 3 3 84 2 55 5
ξw 7 31 12 34 16 14 22
ιp 4 3 3 38 7 60 6
ξp 30 9 21 58 65 36 9
σl 11 37 14 19 43 16 26
rπ 3 14 10 4 15 54 45
r△y 15 22 21 4 16 20 71
ry 4 12 8 5 17 50 43
ρ 3 13 8 4 15 53 56
ρa 32 38 37 8 39 3 31
ρg 43 57 36 4 21 3 23
ρI 2 14 63 3 8 5 13
σa 88 9 35 3 81 2 7
σg 90 53 56 3 37 1 11
σI 1 8 86 2 4 5 13
σr 3 11 1 1 17 38 89

Note: The efficiency gain EGθi
(xj) measures the reduction in uncertainty about parameter

θi due to observing variable xj , expressed as a per cent of the parameter uncertainty when
xj is not observed.
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2.4 The role of interest rate and inflation

One of the main conclusions reached by CFM is that neither interest rate nor inflation data should

be selected, if one had to choose only four of the seven variables. This is surprising since some of

the parameters CFM focus on are the price stickiness and price indexation parameters as well as the

inflation and output coefficients in the monetary policy rule. Intuitively, one would expect that inflation

and interest rate are very informative about these parameters.

To formally measure the amount of information contributed by each one of the observed variables,

we compute parameter efficiency gains defined as the expected reduction in parameter uncertainty due

to observing a variable, expressed as a percent of the uncertainty when that variable is not observed.

Formally, the efficiency gain of a variable xj with respect to a parameter θi is defined as

EGθi(xj) = 100

(

CRLBθi(x \ xj)− CRLBθi(x)

CRLBθi(x \ xj)

)

(2.2)

where x is the set of all variables: x := {y, c, i, h, w, π, r}.

Since we want to know how much information each variable contributes relative to all other variables,

we consider the full SW model, evaluated at the posterior mean value of θ. Table 6 shows the efficiency

gains with respect to all free parameters. For 8 of them the largest efficiency gains come from either

r or π. This includes 4 of the 6 parameters CFM focus of, namely ιp, rπ , ry, for which π is the most

informative variable, and λ, for which r is the most informative variable. As can be seen from the table,

π and r are also very informative about several other parameters, e.g. α, σc, ιw, ξp, and σl, suggesting

that excluding these variables would lead to a substantial loss of information.

2.5 Monte Carlo study

The FIM-based analysis is a simple way of quantifying the information content of the restrictions the

DSGE model imposes on the joint probability distribution of the observed variables. This makes it

well suited for ranking different sets of observables in terms of the amount of information about the

unknown parameters one could expect to get from each set. In this section we evaluate the predictions

of the FIM approach using Monte Carlo simulations. In particular, we simulate the baseline model with

4 structural shocks to generate 400 artificial samples of 150 observations for each of the seven observable

variables. We estimate by maximum likelihood the 24 free parameters using different subsets of four

variables. We focus on the six subsets presented in Table 2, which comprise of the most informative

ones according to our FIM-based criteria, and the subsets recommended by CFM.

Table 7 reports the simulated root mean squared errors (RMSE) for individual parameters as well

as the average RMSEs of the three groups of parameters considered before. As before, we regard the

sets of observables yielding lower average RMSE as being relatively more informative with respect to

a given group of parameters. Overall, the results confirm the ranking of observables implied by the

FIM analysis. In particular, the three subsets containing y, c and i have significantly larger average

RMSEs than the other three subsets. As before (c, i, π, r) is ranked as the most informative set of

variables with respect to the six structural parameter CFM focus on. In fact, the ranking of variables

according to that criterion is exactly the same as the one in Table 2. Also, it is worth noting that
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Table 7: Simulated root mean squared errors, T = 150

(c, i, π, r) (y, c, w, r) (y, c, w, π) (y, c, i, w) (y, c, i, π) (y, c, i, h)

param. A. individual parameters

ρga 0.478 0.216 0.219 0.229 0.275 0.173
α 0.050 0.053 0.060 0.050 0.060 0.055
ψ 0.110 0.204 0.251 0.148 0.195 0.187
β 0.011 0.016 0.020 0.011 0.015 0.012
ϕ 3.120 3.321 3.230 3.849 4.222 3.256
σc 0.135 0.214 0.359 0.306 0.405 0.447
λ 0.028 0.034 0.059 0.069 0.098 0.097
Φ 0.389 0.144 0.181 0.209 0.690 0.267
ιw 0.244 0.299 0.086 0.295 0.418 0.428
ξw 0.072 0.029 0.021 0.033 0.221 0.250
ιp 0.050 0.242 0.078 0.236 0.128 0.450
ξp 0.112 0.058 0.058 0.073 0.205 0.283
σl 1.186 0.288 0.315 0.347 3.529 2.226
rπ 0.394 0.803 0.816 0.914 0.735 0.824
r△y 0.053 0.046 0.151 0.218 0.152 0.395
ry 0.073 0.224 0.230 0.245 0.177 0.161
ρ 0.025 0.044 0.054 0.117 0.083 0.121
ρa 0.008 0.017 0.051 0.052 0.062 0.040
ρg 0.005 0.012 0.059 0.026 0.031 0.030
ρI 0.049 0.060 0.066 0.070 0.082 0.070
σa 0.148 0.096 0.144 0.258 0.241 0.057
σg 0.164 0.047 0.064 0.047 0.077 0.056
σI 0.058 0.268 0.301 0.114 0.130 0.100
σr 0.017 0.018 0.131 0.145 0.182 0.181

B. Overall

24 parameters 0.085 0.097 0.125 0.137 0.191 0.176
17 parameters 0.112 0.128 0.142 0.162 0.252 0.237
6 parameters 0.132 0.171 0.158 0.212 0.325 0.392

Note: The root mean squared errors (RMSE) are calculated using 400 Monte Carlo simulations. Panel B
shows the geometric averages of the RMSE for three groups of parameters: 24 (all free) parameters; 17 (all
except shock) parameters; 6 (only λ, ιp, ξp, σl, rπ, ry).
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Table 8: Monte Carlo results and theoretical CRLBs (part I)

(c, i, π, r) (y, c, w, r) (y, c, w, π)

param. True Mean Std. dev. CRLB Mean Std. dev. CRLB Mean Std. dev. CRLB

ρga 0.510 0.459 0.476 1.754 0.503 0.216 0.206 0.452 0.211 0.215
α 0.20 0.210 0.049 0.048 0.204 0.053 0.049 0.216 0.058 0.046
ψ 0.26 0.258 0.110 0.102 0.272 0.203 0.201 0.277 0.250 0.255
β 0.99 0.988 0.010 0.011 0.983 0.014 0.016 0.980 0.017 0.018
ϕ 5.48 6.033 3.074 2.812 5.113 3.305 3.852 4.601 3.111 4.874
σc 1.39 1.408 0.134 0.154 1.477 0.196 0.192 1.524 0.334 0.279
λ 0.71 0.705 0.028 0.031 0.696 0.031 0.027 0.687 0.054 0.035
Φ 1.61 1.681 0.383 0.323 1.652 0.138 0.123 1.530 0.162 0.124
ιw 0.59 0.592 0.244 0.180 0.698 0.279 0.269 0.560 0.080 0.072
ξw 0.73 0.734 0.072 0.142 0.716 0.026 0.021 0.729 0.021 0.018
ιp 0.47 0.456 0.048 0.044 0.506 0.239 0.247 0.463 0.078 0.074
ξp 0.65 0.615 0.107 0.155 0.640 0.057 0.044 0.659 0.057 0.043
σl 1.92 2.235 1.145 0.790 1.969 0.285 0.163 1.933 0.315 0.196
rπ 2.03 2.129 0.382 0.300 1.907 0.794 1.588 2.155 0.808 1.336
r△y 0.22 0.239 0.049 0.048 0.213 0.046 0.042 0.263 0.144 0.138
ry 0.08 0.092 0.072 0.060 0.211 0.182 0.296 0.218 0.184 0.236
ρ 0.87 0.871 0.025 0.028 0.874 0.044 0.050 0.883 0.052 0.053
ρa 0.95 0.947 0.007 0.015 0.948 0.017 0.018 0.923 0.043 0.022
ρg 0.97 0.968 0.004 0.004 0.968 0.012 0.011 0.949 0.055 0.014
ρI 0.71 0.708 0.049 0.049 0.712 0.060 0.064 0.720 0.066 0.074
σa 0.46 0.421 0.143 0.418 0.442 0.095 0.100 0.504 0.137 0.098
σg 0.61 0.619 0.164 0.145 0.605 0.046 0.044 0.598 0.063 0.048
σI 0.60 0.609 0.058 0.063 0.758 0.216 0.197 0.810 0.216 0.271
σr 0.25 0.254 0.017 0.016 0.249 0.018 0.017 0.276 0.129 0.132

Note: The means and standard deviations of MLE are calculated using 400 Monte Carlo simulations.

the values of the RMSE are generally very similar to the respective values of the CRLBs. This is not

something we would necessarily expect for at least two reasons. First, the CRLBs are by definition

lower bounds on the standard deviations of unbiased estimators. Hence, even if the estimation bias is

small, the actual RMSEs may be significantly larger than the theoretical lower bounds. Second, the

CRLBs do not account for any a priori restrictions on the parameter values, such as the restriction

that a parameter has to be between 0 and 1. In our ML estimation we imposed such restrictions on a

number of parameters, e.g. β, α, λ, ξw , ξp, ιw, ιp, as well as the autoregressive coefficients of the shocks.4

One consequence of ignoring these restrictions could be that the theoretical bounds on the estimation

uncertainty are larger than the actual uncertainty. Such discrepancies occurred in a very few cases in

our simulations, as can be seen in Tables 8 and 9 (see for instance the values for ρga when (c, i, π, r) is

observed). In the vast majority of cases the theoretical bounds are very close to the simulation-based

standard errors.

4We also impose the restriction that the model has an unique solution, which further restricts the parameter space.
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Table 9: Monte Carlo results and theoretical CRLBs (part II)

(y, c, i, w) (y, c, i, π) (y, c, i, h)

param. True Mean Std. dev. CRLB Mean Std. dev. CRLB Mean Std. dev. CRLB

ρga 0.51 0.436 0.217 0.245 0.629 0.248 0.307 0.488 0.172 0.158
α 0.20 0.210 0.049 0.054 0.206 0.060 0.075 0.209 0.055 0.071
ψ 0.26 0.278 0.147 0.131 0.282 0.194 0.187 0.294 0.184 0.179
β 0.99 0.988 0.010 0.011 0.987 0.015 0.015 0.988 0.012 0.014
ϕ 5.48 5.887 3.832 6.153 5.809 4.214 6.770 6.019 3.215 2.566
σc 1.39 1.443 0.302 0.224 1.435 0.403 0.536 1.529 0.425 0.430
λ 0.71 0.684 0.064 0.044 0.675 0.091 0.099 0.668 0.087 0.151
Φ 1.61 1.562 0.203 0.159 1.497 0.681 1.482 1.636 0.266 0.221
ιw 0.59 0.726 0.262 0.243 0.691 0.406 1.061 0.638 0.426 1.359
ξw 0.73 0.718 0.031 0.021 0.722 0.221 0.177 0.691 0.247 0.257
ιp 0.47 0.548 0.223 0.208 0.487 0.127 0.099 0.609 0.429 1.187
ξp 0.65 0.672 0.069 0.048 0.698 0.200 0.401 0.522 0.252 0.480
σl 1.92 1.889 0.346 0.223 3.903 2.924 2.000 2.920 1.991 0.934
rπ 2.03 1.850 0.897 4.476 1.993 0.735 1.753 1.995 0.824 3.973
r△y 0.22 0.242 0.217 0.166 0.120 0.150 0.193 0.394 0.355 0.569
ry 0.08 0.228 0.195 0.632 0.137 0.167 0.257 0.126 0.154 1.057
ρ 0.87 0.838 0.113 0.082 0.851 0.081 0.091 0.822 0.111 0.189
ρa 0.95 0.927 0.046 0.025 0.925 0.057 0.029 0.930 0.034 0.023
ρg 0.97 0.961 0.024 0.014 0.958 0.028 0.015 0.958 0.028 0.016
ρI 0.71 0.701 0.069 0.095 0.718 0.082 0.100 0.705 0.070 0.066
σa 0.46 0.580 0.229 0.208 0.479 0.241 0.361 0.454 0.057 0.046
σg 0.61 0.597 0.045 0.043 0.565 0.062 0.089 0.591 0.053 0.054
σI 0.60 0.654 0.101 0.082 0.653 0.119 0.086 0.635 0.094 0.082
σr 0.25 0.260 0.145 0.126 0.274 0.181 0.255 0.294 0.176 0.292

Note: see the note to table 8
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3 Concluding remarks

Our results can be summarized as follows: (1) The rank condition for identification is not informative

about the optimal choice of observables for the model that was analyzed. In general, such a criterion

could be useful when only one, or a very few, of the many possible sets of variables satisfy the identifi-

cation condition. This seems to rarely be the case in practice. (2) At the baseline parametrization of

the model the most informative set of variables includes consumption, investment, interest rate, and

inflation. (3) The most informative set of variables is not invariant to the parametrization of the model

or the number of shocks.

All of these findings call into question the conclusions of CFM. Perhaps the most important one is

(3), which implies that the optimal selection of observables cannot, in general, be based on analysis at

a single point in the parameter space. A reasonable approach in a Bayesian context would be to base

the choice of variables on the expected value of the preferred criterion, with expectation taken over the

prior distribution of the parameters.
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